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● Introduction to general growth mixture modeling

– Avoiding measurement error and ,accounting for

heterogeneity using continuous and categorical latent

variables

● Alcohol research example

– Predicting alcohol dependence at age 30 from

trajectories of heaving drinking development ages

18-25

. Unemployment/depression prevention trial example

– Modeling intervention effects with non-compliance

● Implications for clinical trials with repeated measures of

surrogate endpoint biomarkers

– Two simulation studies
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M&tures and Latent ~ajectory Classes

Modeling motivated by substantive theories of

. Multiple Disease Processes: Prostate cancer (Pearson et

al.)

. Multiple Pathways of Development: Adolescent-limit ed

and lifecourse persistent antisocial behavior (Mofitt),

crime curves (Nagin), alcohol development (Zucker,

Schulenberg)

. Subtypes: Subtypes of alcoholism (Cloninger, Zucker)



Mixed-effects Regression Models
for Studying the Natural History
of Prostate Disease.

Pearson, Morrell$Landis, and Carter(1994).
Statisticsin Medicine

MIXE~EFFEffS REGR=SION MODELS
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~Second-Generation SEM b

D

Latent variable modeling with a combination of categorical

and continuous latent variables
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General Growth Mixture Modeling (GGMM)

Source:

● Muth6n (1998). Second-generation structural equation

modeling. In New Methods for the Analysis of Change.

● Muth6n & Muth6n (1998). Mplus

GGMM goes beyond conventional random coefficient growth

modeling by using latent trajectory classes which

● Allow for heterogeneity with respect to:

– Growth functions - different classes correspond to

different growth shapes

– Antecedents - different background variables have

different importance for different classes

– Consequences - class membership predicts later ~~~

outcomes

● Allow for confirmatory analysis:

– With respect to parameters - describing curve shapes

– With respect to typical individuals - known classes

● Allow for classification of individuals:

– Prediction of trajectory class membership

● Allow for enhanced preventive intervention analysis:

– Different classes benefit differently and can receive

different treatments
L
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Analysis of Normative and Non-Normative

Development in Heavy Drinking: Growth Curve

Shapes

Source: Muth6n & Shedden (1998). Finite mkture modeling

with mkture outcomes using the EM algorithm.

Forthcoming in Biometrics.

NLSY - National Longitudinal Survey of Youth

●

●

●

Outcome variable: Frequency of heavy drinking during

the last 30 days

Background variables: Gender, ethnicity, family history

of alcohol problems, early start, high school dropout

This illustration: Heavy drinking at ages 18, 19, 20, 24,

and 25 (n = 935), quadratic growth model

– Model part 1: Predicting growth curve shapes 18-25

– Model part 2: Predicting alcohol dependence at age

30 from the growth curve shapes

– M=imum-likelihood estimation using Mplus



Example: NLSY Heavy Drinking

Two Latent Trajectory Classes

Hea~ Drinking

~ Age
18 22 26 30

I
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Predicting ~ajectory Class Membership

EstimatedLogit Coefficients:

Covariate(x) High vs Norm Increasevs Norm

Mde 1.25 1.48

Black -1.60 -.67

Hispanic -.22 .74

EarlyOnset 1.07 .62

FH123 .62 .68

Dropout .22 .s0
College -.61 -.04



NLSY Hea~ DrinMng Developmental Trajecto~ Classes

Initial Mnear Quadratic
Curve Type Status Change Change

w zero zero zero

+ low low, pos. low, neg.

n,
low high, pos. high, neg.

b high low, pos.+ zero

low

b high

high, pos.

neg.

pos.

pos.

● Lowerthanforaveragecurve



NLSY: Antecedents and Consequences b

I H=vy Driting overmm I

Gender
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c=2)=0.36 6.47

P( Dep I c=3 ) = 0.08 1.00



Intervention Analysis with No-Shows:

JOBS II ( n = 1168): ITT Analysis

Intemention

DepO

‘KTX

Cntrl goup slope mean= -0.040 (.015)
Tx effect= -0.024 (.018)
Tx E.S. = -0.04

Treatment @oup: Non-Compliers 308
Compfiers 488 (ratio = .61)
Total 796 (ratio = .68)

Control @oup: Non-Compliers ?
Compliers ?
Total 372



JOBS, Controls
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Intervention Analysis with No-Shows Cent’d

JOBS II: 6-Class Compliance x Baseline Mixtnre Analysis

DepO
A

Bwfine
&oup

mTX

Categories of People

Baseline Co

Low Medium High

CnEl NC a
c1:

b c

c ~ e f

Tx NC g
c1: h i g+h+i

c j k 1 j +k+l

. Celltotds g+h+iandj+k+l known

● CACE: Compting j with d, k with e, 1 witi f )
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Jobs 11: CACE Estimates for 6-Class
Compliance x Basehe Mixture Model

CompfierTx Effect(estimate(se.), E.S.):

Low basehne: .055 (.038), .16

Me&urnbasetine: -.118 (.1 14), -.36

High baseline: -.103 (.024), -.32
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Implications for using Repeated Measures of

Surrogate Endpoint Biomarkers in Clinical Trials

. Effort to learn maximally from surrogate markers

● Growth curve modeling of repeated measures limits

measurement error problems by focusing on latent

growth factors (random coefficients)

. General growth mixture modeling allows for

heterogeneity in the form of latent classes of individuals

with qualitatively different development

. Control group (placebo) has different growth trajectory

classes

● Interventions often interact with individual

characteristics (background, and/or surrogate marker

baseline/growth intercept, growth rate, growth shape)

. Tx growth different from Control group growth, possibly

within each class

● Tx effect estimation within class

● Non-compliance creates further classes

. Attempts can be made to absorb direct effects of Tx on

clinical endpoints by including further latent variables

and their measurements, adding further surrogate

markers

L 1
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Smogate Markersin ClinicalTrials

RepeatedMeaswesof
Smogate EndpointBiommkers

Bmkgromd
Variables

Treatment
Control

“m
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Repeated Measwes of
Swogate Endpoint Biomarkers

\\\\

I 1

I Tx ---------------:;:$::t~
I I L————-



\

Repeated Measures of
Surrogate Endpoint Biom~kers
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Design Issues for using Repeated Measures of

Surrogate Endpoint Biomarkers in Clinical ~ials

. Sample size and power to detect Tx effects ~

● Number of time points

– How soon can a study be ended?

– Should the study go on longer for certain trajectory

classes?

– How well can individual class membership and growth

factor values be estimated?

● Loss of power due to missing data

● Loss of power due to non compliance

● Increase power by

– Pre-intervention measures of surrogate marker

development

– Pre-intervention background measures predicting

growth (classes) and compliance

– Compliance measurements

– Using training data to limit trajectory class

uncertainty
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